a2 United States Patent

Kannan et al.

US009424024B2

US 9,424,024 B2
*Aug. 23,2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)
(65)

(60)

(1)

(52)

SYSTEM AND METHOD FOR ELASTICITY
MANAGEMENT OF SERVICES WITH A
CLOUD COMPUTING ENVIRONMENT

Applicant: Oracle International Corporation,
Redwood Shores, CA (US)

Mahesh Kannan, Santa Clara, CA (US);
Abhijit Kumar, Cupertino, CA (US);
Rajiv Mordani, Sunnyvale, CA (US);
Carla Mott, Mountain View, CA (US)

ORACLE INTERNATIONAL
CORPORATION, Redwood Shores,
CA (US)

Inventors:

Assignee:

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/970,460
Filed: Aug. 19, 2013
Prior Publication Data
US 2014/0075412 Al Mar. 13, 2014
Related U.S. Application Data

Provisional application No. 61/799,249, filed on Mar.
15, 2013, provisional application No. 61/698,467,
filed on Sep. 7, 2012, provisional application No.
61/748,658, filed on Jan. 3, 2013, provisional
application No. 61/766,819, filed on Feb. 20, 2013.

Int. Cl.
GO6F 15/16 (2006.01)
GO6F 9/44 (2006.01)
(Continued)
U.S. CL
CPC ..o GOG6F 8/70 (2013.01); GOGF 9/5072

(2013.01); HO4L 41/5016 (2013.01); GO6F
8/60 (2013.01);

(Continued)

(58) Field of Classification Search
CPC GOG6F 8/60; HO4L 67/10; HO4L 41/12
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2012/0072985 Al
2013/0227143 Al*

3/2012 Davne
8/2013 Stevens ... GOG6F 9/46
709/226

(Continued)

FOREIGN PATENT DOCUMENTS

WO 2012100092 7/2012
WO 20120100092 7/2012
OTHER PUBLICATIONS

Francesco Lelli and Geert Monsieur, Service Engineering and
Lifecycle Management: Scientific and Technical Report D2.1.3, Sev-
enth Framework Programme, version 1.1, Jul. 15, 2013, retrieved
online on Apr. 13,2016, pp. 1-41. Retrieved from the Internet: <URL:
http://www.4caast.ew/wp-content/uploads/2013/10/D2.1.3-M37-
Service-engineering-and-Lifecycle-ma>.*

(Continued)

Primary Examiner — Thuy Dao
Assistant Examiner — Hanh T Bui
(74) Attorney, Agent, or Firm — Tucker Ellis LLP

(57) ABSTRACT

A system and method for elasticity management of services
for use with a cloud computing environment. In accordance
with an embodiment, a cloud platform enables provisioning
of enterprise software applications within a cloud environ-
ment, including packaging enterprise applications as service
definition packages (SDP), and instantiating the services
using service management engines (SME). In an embodi-
ment, an elasticity manager can be used to determine the
health of the services, and to take appropriate actions, includ-
ing detecting events, issuing alerts and/or notifying the
orchestration engine to manage the service lifecycle, e.g., to
respond to an increased demand for particular services.

18 Claims, 18 Drawing Sheets

Provide one or more computers including a cloud environment and a
Paa$ platform companent (Paa$S platform) executing therson

I 612

!

Provide one or more service definition packages, for use with the
platform component, wherein each service definition package includes
an application binary companent, and a metadata

I~ 614

!

Parse the one or more service definition packages, to determine
service characteristics and requirements, for a particular enterprise
application component, that determine how that particular enterprise
application component is deliverable as a service type
within the platform component

I~ 616

!

Provislon

service types into the platform component, for use within the
cloud environment

, 618

US 9,424,024 B2
Page 2

(51) Int.CL

GOGF 9/50 (2006.01)
HO4L 12/24 (2006.01)
GOGF 9/445 (2006.01)
HO4L 29/08 (2006.01)
GOGF 11/30 (2006.01)
GOGF 11/34 (2006.01)
(52) US.CL
CPC GOGF 11/3003 (2013.01); GO6F 11/3065

(2013.01); GOG6F 11/3409 (2013.01); GO6F
2201/815 (2013.01); GOGF 2201/865 (2013.01);
HO4L 41/12 (2013.01); HO4L 41/5025
(2013.01); HO4L 67/10 (2013.01)

(56) References Cited
U.S. PATENT DOCUMENTS

2013/0345945 Al* 12/2013 Fischer ... F02D 45/00
701/102
2013/0346945 Al* 12/2013 Yousouf GO6F 8/36
717121
2014/0074973 Al* 3/2014 Kumar GOG6F 9/5072
709/217
2014/0075412 Al1* 3/2014 Kannan ... HO4L 41/5016
717/120
2015/0089031 Al* 3/2015 Kalaliccceoeennn. HO4L 67/34
709/220
2015/0089039 Al* 3/2015 Mehta HO4L 41/5041
709/223
2015/0089041 Al* 3/2015 Mehta HO4L 41/5041
709/223
2015/0089065 Al* 3/2015 Kasso HO4L 47/741
709/226
OTHER PUBLICATIONS

Clovis Chapman et al., Software Architecture Definition for On-
demand Cloud Provisioning, ACM, 2010, retrieved online on Apr. 13,
2016, pp. 61-72. Retrieved from the Internet: <URL: http://delivery.
acm.org/10.1145/1860000/1851485/p6 1-chapman.pdf?>*

Martin, et al., Automatic Management of Elastic Services in the
Cloud, Jun. 28, 2011, pp. 135-140, Computers and Communications
(ISCC), IEEE Symposium on IEEE.

Rodero-Merino, et al., From Infrastructure Delivery to Service Man-
agement in Clouds, Oct. 1, 2010, pp. 1226-1240, vol. 26, No. 8,
Future Generations Computer Systems, Elsevier Science Publishers,
Netherlands.

International Searching Authority, International Search Report and
Written Opinion for PCT International Application No. PCT/
US2013/058563, Jan. 21, 2014, 10 pages.

International Searching Authority, International Search Report and
Written Opinion for PCT International Application No. PCT/
US2013/058574, Jan. 21, 2014, 11 pages.

International Searching Authority, International Search Report and
Written Opinion for PCT International Application No. PCT/
US2013/058604, Jan. 21, 2014, 10 pages.

International Searching Authority, International Search Report and
Written Opinion for PCT International Application No. PCT/
US2013/058607, Jan. 21, 2014, 11 pages.

Thanawala, et al., Oracle SaaS Platform: Building On-Demand
Applications; An Oracle White Paper, Sep. 2008, 21 pages.

Piech, Platform-as-a-Service Private Cloud with Oracle Fusion
Middleware, An Oracle White Paper, Oct. 2009, 20 pages.
Unknown Author, Cost Effective Security and Compliance with
Oracle Database 11g Release 2, An Oracle White Paper, Mar. 2011,
14 pages.

Joshi, et al., Bridging the Divide between SaaS and Enterprise
Datacenters, An Oracle White Paper, Feb. 2010, 18 pages.
McKendrick, Privatizing the Cloud, Oct. 2010, 33 pages, IOUG
Survey on Cloud Computing.

Glas, etal., Achieving the Cloud Computing Vision, An Oracle White
Paper in Enterprise Architecture, Oct. 2010, 22 pages.
Venkataraman, et al., Oracle’s Cloud Solutions for Public Sector, An
Oracle White Paper, Apr. 2011, 28 pages.

Unknown Author, Creating a Self-Service Dev/Test Cloud, A Case
Study from Oracle Product Development I'T, An Oracle White Paper,
Jul. 2011, 12 pages.

Unknown Author, Oracle Exadata Database Machine, Security Over-
view, 2011, 2 pages.

Chauhan, et al., On-Demand Sourcing: Driving Costs Down and
Value Up in a Period of Increased Business Volatility, Jun. 11, 2010,
5 pages.

Unknown Author, Oracle Identity Management 11g, 2010, 4 pages.
Silverstein, et al., Architectural Strategies for IT Optimization: From
Silos to Clouds, An Oracle White Paper on Enterprise Architecture,
May 2010, 21 pages.

Unknown Author, Oracle Optimized Solution for Enterprise Cloud
Infrastructure, An Oracle Technical White Paper, Jun. 2011, 32
pages.

Wang, Oracle Cloud Computing, An Oracle White Paper, Jun. 2011,
16 pages.

Gulati, Cloud Management Using Oracle Enterprise Manager 11g,
An Oracle White Paper, Apr. 2010, 25 pages.

Unknown Author, Accelerating Enterprise Cloud Infrastructure
Deployments, 2011, 4 pages.

Wahl, et al., Oracle Advanced Security with Oracle Database 11g
Release 2, Oracle White Paper, Oct. 2010, 12 pages.

Unknown Author, Reduce TCO and Get More Value from your X86
Infrastructure, 2011, 4 pages.

Unknown Author, Oracle Offers ISVs Comprehensive Platform to
Deliver SaaS Applications, 2008, 2 pages.

Kumar, et al., The Most Complete and Integrated Virtualization:
From Desktop to Datacenter, An Oracle White Paper, Oct. 2010, 13
pages.

International Searching Authority at the European Patent Office,
International Search Report and Written Opinion for PCT Interna-
tional Application No. PCT/US2013/058611, Feb. 4, 2014, 11 pages.
Rodero-Merino, et al., From Infrastructure Delivery to Service Man-
agement in Clouds, Oct. 1, 2010, pp. 1226-1240, vol. 26, Elsevier
Science Publishers, Amsterdam, NL.

Martin, et al., Autonomic Management of Elastic Services in the
Cloud, Jun. 28, 2011, pp. 135-140, IEEE Symposium on Computers
and Communications (ISCC).

* cited by examiner

US 9,424,024 B2

Sheet 1 of 18

Aug. 23, 2016

U.S. Patent

L 34N9OId

oor EmEco._S:m_ mc::QEoO _o:o_O

011 (See|) ainpniseyu| walsAS paleys

0zl ainjoniisequ| juswaBeuepy pue jusws|qeus paieys

091 Jake] (Seed) a21A19S B SE WIoje|d

0/1 19he (Seeg) ao1A18G B se alem}jos

US 9,424,024 B2

Sheet 2 of 18

Aug. 23, 2016

U.S. Patent

¢ 34N9Id

001 WawuonAug Bupndwod pnojy -

(o1Bojexg “6°9) | | srempleH Jaalag uoneolddy paieys

(eepex3 “6'8) z| | alempleH aseqejeq paleys

0L1 (See]) ainionisenyu| wWalsAg paleys
ocl
zel R
Wwswabeuep JueUS | (erepusplog “65)
el 8zl uopealday zzl
Jabeuep (gavn) 48piing wswabeuepn
asudisug Alquiessy [enjIA Ausp|
o€l Zl
Buluoisinoid walsAg uoljeiBaju| eleq
oGl Buing 7G| Aemejen Zgl dmjoeg 0GL 14" 9v1Bunoy ¥yl 19jsuel | vl
9 abesn uoneibau| 2Ino9g SUOIIEDIHION ISITeNUAA dLlIH 9Jld 8Ind9g uedg SnJIIA

0Z1 @injonnsenu| Juswsbeuely pue Jusws|geus paleys

991 JBJUS A9

91 (o1801g9pn ©B9) Jaa1ag uonesiddy

¢9| oseqejeq

091 Jeke (Seed) a01A18g B Se wiojjeld

0/ suoneolddy wolsn ‘Jopusp Weiskg parelbou|

Z/1 (seeg atems|ppiA uoisnd ‘'6'a) suoneolddy asudisjug

0

/1 Jefe] (Seeg) aoiaieg e se a1em}os

US 9,424,024 B2

Sheet 3 of 18

Aug. 23, 2016

U.S. Patent

€ 34nold

0Ll (See|) ainjoniselu] Wa)sAS paleys

0Z| ainjonaselu] Juswsbeuey pue Juswsa|geud paieys

1435
1sBeuep

Ajonse|q pno|D

906G (vA)
Alquisssy |enpip
| 80S
BEYIETS
uoRelsIuILIPY
€16 (shueus Seeq
08
0Lc (ans) subuz
216 ddy 2010188 swabeuep
utewoq 90IAI8S
80IAI9S

20g

(das) eBexoed
uoiuysq 821n8g

00G wiofie|d Seed

091 JoAe (Seed) 901AI9S e Se WIofjield

0/1 1akeT (Sees) ao1nIag e Se a1em)os

US 9,424,024 B2

Sheet 4 of 18

Aug. 23, 2016

¥ 34N9OI4

-] 00g w.iopeld Seed I _
: ! _ 0£G JoouEeg PEo 8¢S 19piroid |
| BIL-gdM I
e e e e e e e e e e e e - a
R e et
_ 128
I SIBpIADId |
! aql
e e e e e e = J
“ 926 |
I JepIADId |
“ dvai .“

vzs
Aoysodey gvAa

(\\

Zls 225 1sfoideqg gvn

ddy ao1n10G

1ZG 01607 wiopeld

ZES 8losuo)
80IAISG

02 8l0suc) uolessiuIwpy

01G urewoq so1Aleg 805 J9AISS UoieRISIUIWPY Seed

U.S. Patent

US 9,424,024 B2

Sheet 5 of 18

Aug. 23, 2016

U.S. Patent

G 34N9Id

] 00g wiopeld seed

¥Zs

/|\|\

Aoysodey gva

\

Zeg Jekoideq gva

L g 01607 wiogeld

[

026G 8|0suo) uolelisiulWpY

80S JoAI9g UolelSIUILPY Seed

905 (VA)
Alquiassy [enMIA

)

.{\\

c08

(das) sbexoed
uoniulyaq soIAIeS

0§

(3WS) suibuz
wawabeuep a901A19G

US 9,424,024 B2

Sheet 6 of 18

Aug. 23, 2016

U.S. Patent

9 34N9Id

00} JuswiuoaiAuz Bupndwo) pnojg ™ L i

“| 0o wiopeld seed

|

|

! 2% £¥9 Z5G

| JoAIBS JoAIeS PETVIEIN
i o NAO WAO
|

| A

|

|

|

- LG JoBeuepy A

¥es

Aolsoday gva

(‘l\‘\

zz6 19holdag gva

A

1ZG 21607 wiopeld

A

0cg 8josuo) uonesiuiWupy

380G IsAI8g uoijelSIUIWPY Seed

US 9,424,024 B2

Sheet 7 of 18

Aug. 23, 2016

U.S. Patent

L 34N9I4

|
¢GG Njueus |
916 J8sN
\‘l\u‘\\!‘l};\
ueus i :
1GG g jueus | _ A\\.\\\ ,,
0GG YV jueus | .\

Z1S ddy so1n8g

266 i \

8|aSUD)) 90IAIOS e~ | .

01G ulrewo(92IAI9S

US 9,424,024 B2

Sheet 8 of 18

Aug. 23, 2016

U.S. Patent

8 34N9I4d

001 s wuosiaug Bunndwo?n pnojn

00G wJojje|d Seed

986G 81015 Amuap)

Z86 210]3 JUN0D2Y

¥8%
s9[l4

€89
uoneinbiuon)

A

A

18G IdV
JuswabBeuep Anusp|

clS
aoeusU|
uoneJsiuiupy

7

08G Johe
uoljesnByuo)

¥ .G juswabeuep
N0y

£.G Juswabeuep
uoneinfByuon

026G JaBeue|y UNO0Y pNojD

%

%

%

990G ddIAIBg
Juswabeuepy Anusp|

Y9G
W30

29¢
JINS/oUIBUT UoljeN}sayDIO

096 90IAIBS UOHeJISIUILIPY WIoHEe|d PNOJD

US 9,424,024 B2

Sheet 9 of 18

Aug. 23, 2016

U.S. Patent

6 34N9Id

.OO—. Juswiu

| 00s wuopeld seeqd

019 (019 ‘g 901018
‘v 901nI9G ‘6'9)
(s)eoinieg

909

¢ azlleay

0.8
BE =TI

JUN022Y pPNojD

9

2G Alonsoday gvA

¥09

g adA] ao1n18G

c09

666 uibn|d
wopeld pnojd

866G erepedi

L6g Keug
uones|ddy

96G 9 4dS

/<ma> 1 90198)

(‘\

zzg seholdeq gva

065
1sbBeueN 4as

D

126 21607 wioge|d

0ZG 8|0Su0D uohensiuIupy

80S JoAI9S UoijeNSIuILpY Seed

666 uibn|d
wJopeld pnoin

¥6G eyepelsi

€65 Areurg
uoneo|ddy

26s v dds

US 9,424,024 B2

Sheet 10 of 18

Aug. 23, 2016

U.S. Patent

0l 34N9I4

819

JUSWIUOJIAUS PNOD
3y} uiypm asn Joj ‘Jusuodwos wiopeld ay) o sadA} aoinles
se sjusuodwod uonesldde asudiajua Buipuodsaliod UOISIACIH

919

wsuodwod uuofie|d ayj uiylm
adA) 821198 B se g|qelanllap sI Jusuodwod uoies)dde
asudiajua Jenaijed jeyl moy auluisiap jey ‘qusuodwod uoljedidde
asudiajusa Jejnojlied e Joj ‘sjuswalinbal pue solIsLa)oBIRYD 99IAISS
aujwalep 0] ‘sebiexoed uoniulep 821AISS 810W IO BUO 8y} 8sied

A

p19 M

elepejall e pue quasuodwos Aleuiq uonesijdde ue
sapnjoul abexyoed uonuep ad1AIas Yoes ulsiaym ‘Jusuodwos wioped
ay1 yim asn 1o} ‘safbexoed uonuysp 921AI8S 810W 10 SUO SPIACIH

z19

uoelay) Bunoexs (wiofe|d geed) Jusuodwoo wioye|d Seed
e pue JUSWIUOIIALS PNOoJd & Buipn|oul sisinduwliod 810w Jo 8UO SpIAOId

US 9,424,024 B2

Sheet 11 of 18

Aug. 23, 2016

U.S. Patent

LL 34N9I4

001 JuswuoAUS Bugndwo) pnojy

-] 005 wiopeld seRd

019 (030 ‘g @0lnIeg 929 (INS) suibuz
‘v 801n18g ‘B'e) P wswsbBeuely adin1eg
(s)soineg < (s01A108)

o¥G J9sN

gz9 (ANS) euibuz
JuswiaBeuey 901A19S
(4sp1r01d) / \
|
e 1
229 o . N ZLS
g adA] 9o1M88 g ¥z9 (3NS) suibug : o TR
T Juswabeuep ad1AI9S JO) m : B uonensiuIwpy
i saluadold s|qeinByuoy) | m :
029 o | T
v odAL eoinieg 296 auibu3g uonensayai0
096 S2IM9g UoelsiulWpPY Wiojjeld pnol)

US 9,424,024 B2

Sheet 12 of 18

Aug. 23, 2016

U.S. Patent

¢l 38N9Id

8€9

sadA} eoinies Jenoiped esoyy pJoddns o) Jusuodios
wioperd sy uiypm sauibus Juswabeuew aoimas Bulpuodsalios ainbiyuos

9€9

abexoed uolusp BOIAISS BY) JO
SJUBJUOD By} Jospue Jusuodwos wiogeld ay; Jo uoneinBiyuod sy} 0}
Buipioooe ‘sadA) 901AI9S JUSISYIP SJOW JO SUO SB SBDIAISS UoISIA0Id 0}
pue ‘abexoed Uol JIUlep 901AI9S B Jo/pue Jjas) Jusuodwoo wiogeld ay; Jo
uoneInByuoo e asled o) pash ale saulbus Juswabeuew 92IAI9S

veg M

JUSLLUOJIAUS PNOJO 8U}
uiym asn 10j psuoisiroid aq o) sadA) esiaiss Jejnoiped sulwisleq

A

ze9

sadA) a01M9s BY) Jo Buliojluow pue
‘wewabeuew a[0A29)1 ‘Buiuoisiroid aiow Jo auo Buipnpoul ‘sadAy
90IABS S $90IAI9S UOISIA0Id 0] pasn ale yolym ‘suiBus uopelissyolio ue
UM UONEDIU NWIWOD Ul ‘saulBus juswabeuewl 891AI9S 8J0W JO aUO 8placid

0£9

uoaJalyy Bunnsaxa (wiofeld Seed) jusuodwos wioje|d Seed
B pue Juswu oJIAUS pnoj2 e Buipn|oul sisindwod 810w IO SUO SpIADId

US 9,424,024 B2

Sheet 13 of 18

Aug. 23, 2016

U.S. Patent

€L 38N9I4

001 s WwuoAUT Bupndwog pnojy i

{ 005 wiepeid seeqd

¥2s
Aoysoday gva

Y¥S £¥S A%
laneg laneg laneg
NAO WAQ WAQ
A

0vG j00od !

LS Jebeuely WA

JanIss NA “

ﬂ

979 |dV LS3d

A

226 1efolde@ gvA

066G
Jebeue 4as

Z9 el 1shojdeg gvA / uiBnid avA

079 991A198 A|qUIBssyY [enMIA

*

29S
JNS/EUIBUT uoljeISOUDIO

00G S0IAISS UONENSIUIWPY WIofjeld PNOjD

US 9,424,024 B2

Sheet 14 of 18

Aug. 23, 2016

U.S. Patent

vi 34N9I4

859 7™

JUSLUUOJIAUS PNOJD 8y UILIIM
$80IAISS JO JusWabeuew 80A0-a)l] pue ‘sisplacid pue seoIAIes JO
uoneloosse ‘uoljnjosal fouspuadap Jepiroid ‘Uoljesld 82IAISS JO MOl 8]
[onuoo o} sa uibus juswabeuew ao1AIs Jo Alljein|d B Yyim ajesiunwwon)

999

sadA) ao1a18s Jenoiued asoyy
poddns o} Jusuodwos wiope|d sy} uiypm seuibus
wswabeuew soialas Bulpuodssaliod sinbiuod pue ‘JUsWUoIAUS PNoJD
By} ulypm asn oy pauoisiaold aq 0} sadA) aoialas Jejnojued sulwislag

v59

saoueldde |enpia Jo Jas e Joj uoneinBiyuod e pue ABojodo) e sauysp
12Uyl Alqwissse | enuia e ‘sfexoed uoiuap aoIAles 8} UILIM ‘suluis)sg

269

jusuod woo wuope|d ay}
uiyum ad A} 801a19s B Se a|gelaAljop sI Jusuodwod
uoneoldde asudiajua Jejnoied jeyl moy ‘yusuodwod uojesijdde esudisius
Jejnoped e 1oy ‘saulep sbexyoed uopluyep 9o1A8S Yoes ulsiaym ‘Jusuodwod
wuogeld sy yim asn Joj ‘sebexoed UoIUSP 92IAISS SI0W JO BUO BAI93aY

069 7~

uoasay) Bunnosxs (wuopeld Seed) jusuodwoo wiojeld seed
B puB JUSWU0JIAUS pnojo B Buipnjoul s18)ndwoo I0W JO SUO SpIAold

US 9,424,024 B2

Sheet 15 of 18

Aug. 23, 2016

U.S. Patent

gL 38N9Id

001 JuewuoaiAuz Bunndwod pnojy:

-] 006 wuopeld seed

298

JNS/suIBUT uonensaydI0

G99 <

Ja1ayies) auPN

43¢

v ddy ao1n198

048
JaBeuely JUNOXoY PNo|D

A

286 8j0suon)
RITNETS

01¢G urewo(g aoIaIeg

Fr—— e, e e e —————— -

899
suibu3g 13
y
AN
N |
// 199 219
J9AI0S9Y 13 suooy
A
|
99
029
Jalayjes o sualy
299 Jabeuepy JUsWUOIIAUT 2NSe|T

099 Jebeuepy Ayonse|q pnojo

US 9,424,024 B2

Sheet 16 of 18

Aug. 23, 2016

U.S. Patent

91 J4NOI4

6.9

$991AISS Jendfued Joj puewsap paseasoul Buipnioul ‘sjuswsaiinbal 0}
puodssi 0} ‘s |oAd8)l| 831AI8S B} abeuew 0} painblyuod si JebBeuew Ajonse|q

119

aw Jo polad e Jaao siaiayieb ol 910w 1o SUo
Aq paiayieb ejep oujsw BuizAjeue Ag JUSLUUOIIAUS UE Ul SJIAISS B
1o Ujjesy auj syosyo Ajleoipoliad joslgo pspe siym obesn £2inossal 921AI9S
e noge ejep olaW suleulew pue s109]|09 Ajjesipoliad 108lqo Jsisyieh ousp

919

9[0A03y1| 921AIS By} obeuew
0} suibus uonessaysio sy BuiAou Jo/pue sps|e Buinssi
‘sjuaaa Bunosysp Buipnjoul ‘suoijoe syelndoidde saye) pue ‘Jusuodwos
wuogeld sy UIYIM S90IAISS JO Yjesy saulwislap Jobeuew Ayonse|q

719 A~

sadA) soinies Jenoied ssoy) poddns
0} Jusuodwod wiogneld ayj uitim saulbus Juswsbeuew aolAI9s
Buipuodsesi0o sainbBlUOD pUE ‘JUSWUONAUS PNOJD 8Y} UIYIM 8sh 1o
pauoisiroid aq o} sadA) ao1n19s Jenoiled saujwialep sulbus uoesIsayoI0

€19

uosiay} Bunnosxs (wiopeld Seed) Jusuodwos wiojeld Seeyq
€ puUE JUSWU OJIAUS pPnojd e Buipnjoul s19Indwod SJow Jo SUO SpIAcId

US 9,424,024 B2

Sheet 17 of 18

Aug. 23, 2016

U.S. Patent

LI 34N9I4

|| 00G wope|d Seed

! I
A p Y |
Aloyisoday gvA ! 144" 354¢] A4 |
| lonleg BEYNETS JETNETS 1
“ WAO WAO WAO !
z89 ! y I
L4 sajepdn/saysied “ |
ddy a21ni88 " h%\L,‘w_w_mon_\v,_n_/ “
1
[- LyG 1oBeuepy WA 00 0 bm—mmm - !
ajepdnyored D 4
919 I1dV 1S3
26 Jefojde@ gvA
289 81epdn 1senbay
\
//]]
689 ddy soimies | " 089 ddy so1neg "
(PaIpO) A ; (reuibuo) '
PP ! G890 (S)MOPUIM
aouBUSUIBIA
ZES slosuo) Zeg oosuo)
8oIAIeg " 80IAI8G :
Trmsmemenesseneeesd ' 0L G urewoq ¥89 01607 s1epdn soIMI8S
018G

US 9,424,024 B2

Sheet 18 of 18

Aug. 23, 2016

U.S. Patent

81 3dnoId

969

Aposap syusyjuod wajsAs sy sy BuiAypow pue
‘safiesioed uoIIUBP 92IASS §,801A19S BU] O] SPUOdsSalInd Jey] SWnjoA
ysip e Buun ow Aq Jo/pue Jjjasy usuodwod wioye|d Bunbiyuosal Ag
‘AleaiweuAp sjuswalinbai Jojpue solsIeoBIBYD S,821A19S € a)epdn Jo Ajipoly

A

¥69

safexoed uonuyap 821A18S Y] AJIpoW O] MOPUIM 8oUBUSIUIBW
ay) Bunp 2160 ajepdn ao1Ales sU) AQ pesn ale Yyoiym ‘sjusuodlod
Jayio Jojpue jdios ‘o uonelnBiyuoo ‘yoyed sepnioul Jeyl pue ‘swpund
80IAISS JB WSISAS 8]l PaIUNOW B IO |BO0] B JO SU0 sk Alojisodal e apiaold

A

z69

soBexyoed uoiuap 921AISS S} YIm pajeloosse sayepdn
10 sayoted aiow Jo sUO 0} BulpIodIE ‘MOpUIM 8OUBUSIUIEW B UIYIIM Sabexoed
Loniuljap 821AI8S 8 Jow Jo sUo ay) BulAypow Joy o160] ayepdn solAIes & aplrcld

169

wsuodwos wioged ay) uiym adA) aoiales e se s|qelailsp si Jusuoduwod
uopeoldde asudiajus Jenaiped yeyy moy ‘usuodwod uoljedlidde asudisjus
Jejnoiped e Joy ‘'saulsp sbeyoed uoniusp 921A19S Yyoes ulslaym ‘Jusuodwoo

wuopeld syl yim asn 1o} ‘safiexoed uoiULSP 90IAISS 9I0W IO BUO 3pIACIH

A

069 7~

uoaJsay) Bunnosxs (wioped geed) Jusuodwoo wioyeld geed
© pue JUSWU OJIAUS pPNojo B Bulpnjoul s1aindwod a1ow 0 SUo 8pIACId

US 9,424,024 B2

1
SYSTEM AND METHOD FOR ELASTICITY
MANAGEMENT OF SERVICES WITH A
CLOUD COMPUTING ENVIRONMENT

CLAIM OF PRIORITY

This application claims the benefit of priority to U.S. Pro-
visional Patent Application titled “SYSTEM AND
METHOD FOR ELASTICITY MANAGEMENT OF SER-
VICES WITH A CLOUD COMPUTING ENVIRON-
MENT”, Application No. 61/799,249, filed Mar. 15, 2013;
U.S. Provisional Patent Application titled “SYSTEM AND
METHOD FOR PROVIDING A CLOUD COMPUTING
ENVIRONMENT”, Application No. 61/698,467, filed Sep.
7,2012; U.S. Provisional Patent Application titled “SYSTEM
AND METHOD FOR PROVIDING A CLOUD COMPUT-
ING ENVIRONMENT”, Application No. 61/748,658, filed
Jan. 3, 2013; and U.S. Provisional Patent Application titled
“SYSTEM AND METHOD FOR PROVIDING A CLOUD
COMPUTING ENVIRONMENT”, Application No. 61/766,
819, filed Feb. 20, 2013, each of which above applications are
herein incorporated by reference.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
tains material which is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

FIELD OF INVENTION

Embodiments of the invention are generally related to
cloud computing, and in particular to systems and methods
for elasticity management of services with a cloud computing
environment.

BACKGROUND

The term “cloud computing” is generally used to describe
a computing model which enables on-demand access to a
shared pool of computing resources, such as computer net-
works, servers, software applications, and services, and
which allows for rapid provisioning and release of resources
with minimal management effort or service provider interac-
tion.

A cloud computing environment (sometimes referred to as
a cloud environment, or a cloud) can be implemented in a
variety of different ways to best suit different requirements.
For example, in a public cloud environment, the underlying
computing infrastructure is owned by an organization that
makes its cloud services available to other organizations or to
the general public. In contrast, a private cloud environment is
generally intended solely for use by, or within, a single orga-
nization. A community cloud is intended to be shared by
several organizations within a community; while a hybrid
cloud comprise two or more types of cloud (e.g., private,
community, or public) that are bound together by data and
application portability.

Generally, a cloud computing model enables some of those
responsibilities which previously may have been provided by
anorganization’s own information technology department, to
instead be delivered as service layers within a cloud environ-
ment, for use by consumers (either within or external to the

w

15

20

30

35

40

45

50

55

60

65

2

organization, according to the cloud’s public/private nature).
Depending on the particular implementation, the precise defi-
nition of components or features provided by or within each
cloud service layer can vary, but common examples include:

Software as a Service (SaaS), in which consumers use
software applications that are running upon a cloud
infrastructure, while a SaaS provider manages or con-
trols the underlying cloud infrastructure and applica-
tions.

Platform as a Service (PaaS), in which consumers can use
software programming languages and development
tools supported by a PaaS provider to develop, deploy,
and otherwise control their own applications, while the
PaaS provider manages or controls other aspects of the
cloud environment (i.e., everything below the run-time
execution environment).

Infrastructure as a Service (IaaS), in which consumers can
deploy and run arbitrary software applications, and/or
provision processing, storage, networks, and other fun-
damental computing resources, while an laaS provider
manages or controls the underlying physical cloud infra-
structure (i.e., everything below the operating system
layer).

The above examples are provided to illustrate some of the
types of environment within which embodiments of the
invention can generally be used. In accordance with various
embodiments, the systems and methods described herein can
also be used with other types of cloud or computing environ-
ments.

SUMMARY

Described herein is a system and method for elasticity
management of services for use with a cloud computing envi-
ronment. In accordance with an embodiment, a cloud plat-
form enables provisioning of enterprise software applications
within a cloud environment, including packaging enterprise
applications as service definition packages (SDP), and instan-
tiating the services using service management engines
(SME). In an embodiment, an elasticity manager can be used
to determine the health of the services, and to take appropriate
actions, including detecting events, issuing alerts and/or noti-
fying the orchestration engine to manage the service life-
cycle, e.g., to respond to an increased demand for particular
services.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 illustrates a cloud computing environment includ-
ing service layers, in accordance with an embodiment.

FIG. 2 further illustrates an environment, in accordance
with an embodiment.

FIG. 3 illustrates a cloud computing environment that can
include a PaaS platform component, in accordance with an
embodiment.

FIG. 4 further illustrates a PaaS platform component,
including an administration server and a service domain, in
accordance with an embodiment.

FIG. 5 further illustrates a PaaS platform component,
including the use of service definition packages and service
management engines with an administration server, in accor-
dance with an embodiment

FIG. 6 further illustrates a PaaS platform component,
including the interaction between an administration server
and a virtualization manager, in accordance with an embodi-
ment

US 9,424,024 B2

3

FIG. 7 further illustrates a PaaS platform component,
including a multiple tenant service domain, in accordance
with an embodiment.

FIG. 8 further illustrates a PaaS platform component,
including a cloud account manager, in accordance with an
embodiment

FIG. 9 furtherillustrates use of a service definition package
with a PaaS platform component, in accordance with an
embodiment.

FIG. 10 is a flowchart of a process for using a service
definition package with a PaaS platform component, in accor-
dance with an embodiment.

FIG. 11 further illustrates use of a service management
engine with a PaaS platform component, in accordance with
an embodiment.

FIG. 12 is a flowchart of a process for using a service
management engine with a PaaS platform component, in
accordance with an embodiment.

FIG. 13 further illustrates use of an orchestration engine
with a PaaS platform component, in accordance with an
embodiment.

FIG. 14 is a flowchart of a process for using an orchestra-
tion engine with a PaaS platform component, in accordance
with an embodiment.

FIG. 15 further illustrates use of an elasticity manager with
a PaaS platform component, in accordance with an embodi-
ment.

FIG. 16 is a flowchart of a process for using an elasticity
manager with a PaaS platform component, in accordance
with an embodiment.

FIG. 17 further illustrates patching of service definition
packages with a PaaS platform component, in accordance
with an embodiment.

FIG. 18 is a flowchart of a process for patching of service
definition packages with a PaaS platform component, in
accordance with an embodiment.

DETAILED DESCRIPTION

As described above, a cloud computing environment
(cloud environment, or cloud) can be implemented in a vari-
ety of different ways to best suit different requirements: for
example, public cloud, private cloud, community cloud, or
hybrid cloud. A cloud computing model enables some of
those responsibilities which previously may have been pro-
vided by an organization’s own information technology
department, to instead be delivered as service layers within a
cloud environment, for use by consumers (either within or
external to the organization, according to the cloud’s public/
private nature).

Described herein are a variety of hardware and/or software
components and features, which can be used in delivering an
infrastructure, platform, and/or applications to support cloud
computing environments. In accordance with various
embodiments, the system can also utilize hardware and soft-
ware such as Oracle Exalogic and/or Exadata machines,
WebLogic and/or Fusion Middleware, and other hardware
and/or software components and features, to provide a cloud
computing environment which is enterprise-grade, enables a
platform for development and deploying applications, pro-
vides a set of enterprise applications built on modern archi-
tecture and use cases, and/or provides flexible consumption
choices.

FIG. 1 illustrates a cloud computing environment includ-
ing service layers, in accordance with an embodiment. As
shown in FIG. 1, in accordance with an embodiment, a cloud
computing environment (cloud environment, or cloud) 100

10

15

20

25

30

35

40

45

50

55

60

65

4

can generally include a combination of one or more Infra-
structure as a Service (IaaS) layer 110, Platform as a Service
(PaaS) layer 160, and/or Software as a Service (SaaS) layer
170, each of which are delivered as service layers within the
cloud environment, and which can be used by consumers
within or external to the organization, depending on the par-
ticular cloud computing model being used.

In accordance with an embodiment, the cloud computing
environment can be implemented as a system that includes
one or more conventional general purpose or specialized digi-
tal computers, computing devices, machines, microproces-
sors, memory and/or computer readable storage media, for
example the computer hardware, software, and resources pro-
vided by Oracle Exalogic, Exadata, or similar machines.

As further shown in FIG. 1, in accordance with an embodi-
ment, the cloud computing environment can include a shared
enablement and managing infrastructure 120, which is
described in further detail below, and which provides enable-
ment and management tools that can be used to support the
various service layers.

The example shown in FIG. 1 is provided as an illustration
of'a type of cloud computing environment in which embodi-
ments of the invention can generally be used. In accordance
with various embodiments, the systems and methods
described herein can also be used with different and/or other
types of cloud or computing environments.

FIG. 2 further illustrates an environment, in accordance
with an embodiment. As shown in FIG. 2, in accordance with
an embodiment, each of the IaaS, PaaS, and/or SaaS layers
can generally include a variety of components. For example,
in accordance with an embodiment, the IaaS layer can include
a shared database hardware (e.g., an Exadata machine) 112,
and/or a shared application server hardware (e.g., an Exalogic
machine). The PaaS layer can include one or more PaaS
services, such as a database service 162, application server
service 164, and/or WebCenter service 166. The SaaS layer
can include various SaaS services, such as enterprise appli-
cations (e.g., Oracle Fusion SaaS) 172, and/or ISV or custom
applications 176.

As described above, in accordance with an embodiment,
the cloud computing environment can also include a shared
enablement and management infrastructure. For example, as
shown in FIG. 2, the shared enablement and management
infrastructure can include one or more identity management
122, data integration 124, replication (e.g., Oracle Golden-
Gate) 126, virtual assembly builder 128, system provisioning
130, tenant management 132, and/or enterprise manager
components 134.

As further shown in FIG. 2, in accordance with an embodi-
ment, the shared enablement and managing infrastructure can
also include other components, such as virus scan 142, secure
file transfer 144, HTTP routing 146, whitelist 148, notifica-
tions 150, secure backup 152, integration gateway 154, and/or
usage & billing 156 components.

The example shown in FIG. 2 is provided as an illustration
of'some of the types of components which can be included in
a cloud computing environment, or within a shared enable-
ment and management infrastructure. In accordance with
other embodiments, different and/or other types or arrange-
ments of components can be included.

PaaS Platform Component

In accordance with an embodiment, the cloud computing
environment can include a PaaS platform component (PaaS
platform), which enables provisioning of enterprise software
applications within a cloud environment.

FIG. 3 illustrates a cloud computing environment that can
include a PaaS platform component, in accordance with an

US 9,424,024 B2

5

embodiment. As shown in FIG. 3, in accordance with an

embodiment, the PaaS platform 500 can be provided as an

installable software suite that provides a self-service provi-
sioning experience for enterprise applications, such as Fusion

Middleware or other enterprise applications.

Generally, installing and configuring enterprise applica-
tions for an organization’s on-premise or private cloud envi-
ronment can involve a considerable amount of administrative
work, including challenges faced by an administrator when
trying to scale their environment horizontally to meet
increased workload demands. In accordance with an embodi-
ment, the PaaS platform component can be easily extended to
host new enterprise application suites when desired, and to
thereafter scale the quantity of instantiated runtimes accord-
ing to increases in load.

As shown in FIG. 3, in accordance with an embodiment,
the PaaS platform can include one or more service definition
package (SDP) 502, service management engine (SME) 504,
virtual assembly (VA) 506, PaaS administration server 508,
service domain 510 (including one or more service apps 512
for use by one or more cloud accounts or tenants 513), and/or
cloud elasticity manager 514 components. Each of these com-
ponents, together with other components and features, are
described in further detail below.

Glossary
In accordance with an embodiment, the following terms

are used herein. In accordance with other embodiments, dif-

ferent and/or other terms can be used.

PaaS Platform Component (PaaS Platform, platform): In
accordance with an embodiment, a PaaS platform compo-
nent (PaaS platform, platform) is an installable software
suite that provides a self-service provisioning experience
for enterprise applications, such as Fusion Middleware or
other enterprise applications.

Cloud Account (Tenant): In accordance with an embodiment,
a cloud account (tenant) is an entity that is associated with
those users/consumers that consume the PaaS platform as
a service. A cloud account establishes an administrative
scope, which account administrators can then use to access
PaaS services. For example, a cloud account can be created
for an organization or company that is buying PaaS ser-
vices from a public PaaS provider. As another example, a
cloud account can be created for a department or group that
is consuming PaaS services from an internal information
technology department that is acting as a private PaaS
provider. In accordance with an embodiment, different
PaaS user roles, such as the cloud account administrator
role described below, can be associated with a cloud
account. In accordance with an embodiment, within the
PaaS platform, consumed resources, such as services
together with their virtual machines, databases, DNS
entries, load-balancer, and other configurations, can be
associated with a cloud account. One or more users, and
zero or more services can similarly be associated with a
cloud account. A PaaS platform domain can be associated
with one, or a plurality of cloud accounts (tenants).

Service Definition Package: In accordance with an embodi-
ment, a Service Definition Package (SDP) is a package that
contains all of the information that is necessary for a par-
ticular type of service to be offered by the PaaS platform.
For example, when used with Fusion Middleware, each
type of Fusion Middleware service can provide its own
SDP. In accordance with an embodiment, an SDP includes
custom code that is installed into the platform, together
with a virtual assembly (e.g., an OVAB assembly) that
contains the topology and configuration of a set of virtual
appliances that will comprise a running instance of the

10

15

20

25

30

35

40

45

50

55

60

65

6

service once deployed onto a set of virtual machines (VM).
For example, a Fusion Middleware application SDP can
include custom code together with a Fusion Middleware
OVAB assembly that contains the topology and configura-
tion needed to deploy a running instance of that Fusion
Middleware application as a service.

Service Type: In accordance with an embodiment, a service
type is a representation of a software functionality that can
be instantiated within the PaaS platform for a cloud
account. In accordance with an embodiment, a service type
can be created based on an SDP, with additional configu-
ration information supplied by the system administrator.
Some of this configuration information may supply values
that are specific to an installation of the platform product or
the enterprise in which it is running; while other configu-
ration information may reflect a system administrator’s
choices of options supported by the SDP. In accordance
with an embodiment, multiple (different) service types can
be created from a single SDP, by making different configu-
ration choices.

Service: In accordance with an embodiment, a service is an
instantiation of a service type. A cloud account can be
associated with multiple services. Within a single cloud
account, there can be multiple services for a single service
type. In accordance with an embodiment, a service pro-
vides both a service administration interface, and an end-
user interface. A service can be associated with identity,
database, or other service features that are required by the
service. A service is associated with a service runtime that
runs on one or more VMs.

Provider Type: In accordance with an embodiment, a provider
type is a special kind of service type that supports providers
instead of services. Provider types are created by the sys-
tem administrator in the same way as service types. As with
the service types described above, a provider type can be
created based on an SDP, with additional configuration
information supplied by the system administrator. Simi-
larly, some of this configuration information may supply
values that are specific to an installation of the platform
product or the enterprise in which it is running; while other
configuration information may reflect the system adminis-
trator’s choices of options supported by the SDP. In accor-
dance with an embodiment, multiple (different) provider
types can be created from a single SDP, by making different
configuration choices.

Provider: In accordance with an embodiment, a provider is a
specialization of a service. Unlike services, which are gen-
erally created by the explicit action of a cloud account
administrator, providers can be created on demand to sat-
isfy the dependencies of services. In accordance with an
embodiment, a provider is an instantiation of a provider
type, and represents the use of a resource managed by the
provider type, by a particular instance of a service type.
Services can be associated with multiple providers. In
accordance with an embodiment, when creating a service,
an orchestration engine matches the requirements of a
desired service type with the capabilities of configured
provider types. The orchestration engine then requests the
service type to create an instance of a service; requests the
provider types to create instances of the providers for use
by this instance of the service; and associates the service
with the providers.

Association Resource: In accordance with an embodiment,
an association resource (provider resource) enables a ser-
vice to keep track of configuration information for a par-
ticular association. For example, if a Java service is asso-
ciated with two different database providers, it may need to

US 9,424,024 B2

7

create a connection pool for each database. An association
resource allows the Java service to keep track of which
connection pool is associated with which database, so that,
if the orchestration engine subsequently needs to change
one of the associations, the Java service will know which
connection pool to change.

Runtime: In accordance with an embodiment, a runtime is a
representation of an installed operational software appli-
cation that provides the functionality of a service or a
provider. In accordance with an embodiment, runtimes are
managed by the custom code included in an SDP, in some
instances using the facilities provided by the PaaS plat-
form, such as virtualization and provisioning support.

Environment: In accordance with an embodiment, an envi-
ronment is a collection of services and their associated
providers, which can be managed together as a group. An
environment can be created for the purpose of running an
application, or providing a higher level service. Environ-
ments provide the ability to operate on a collection of
services as a whole, including operations such as start,
stop, backup, or destroy. In accordance with an embodi-
ment, an environment can provide the functions of an
“association group” and a “management group”.

System Administrator (Role): In accordance with an embodi-
ment, a system administrator is responsible for installing,
configuring, managing, and maintaining the cloud environ-
ment and/or the PaaS platform infrastructure and environ-
ment, including the resources that are made available to
applications running in the environment. For example, in
accordance with an embodiment, the system administrator
is responsible for downloading and installing SDPs to sup-
port new/additional service types; setting up or configuring
the virtualization technology for the PaaS platform to use;
and installing and configuring providers.

Cloud Account Administrator (Role): In accordance with an
embodiment, a cloud account administrator is responsible
for the provisioning of new services, the management of
generic service properties (such as their Quality of Service/
QoS settings) and their associations, and the locking and
termination of services. In accordance with an embodi-
ment, the cloud account administrator can assign service
administrators for each service.

Service Administrator (Role): In accordance with an embodi-
ment, a service administrator is responsible for adminis-
tering and managing a specific service after it has been
provisioned. A service administrator can interact with the
service’s administration interface to perform administra-
tion and management operations.

Application Deployer (Role): In accordance with an embodi-
ment, an application deployer deploys an application to the
provisioned service, and is responsible for installing, con-
figuring, and running the application. Once the application
is running it can then be made available to an end user.

End User (Role): In accordance with an embodiment, an end
user is a user of the application which the application
deployer has deployed to the service. The end user can
interact with a user interface provided by the application
deployed to the service. If the service provides an interface
for users to consume the functionality that it exposes, then
the end user can use that interface provided by the service,
without requiring the application deployer to deploy an
application.

FIG. 4 further illustrates a PaaS platform component,
including an administration server and a service domain, in
accordance with an embodiment. As shown in FIG. 4, in
accordance with an embodiment, once installed, the PaaS
platform (platform) comprises a PaaS administration server

25

35

40

45

55

8

508, which supports an administration console 520, a cloud
platform provisioning/management logic 521, and a virtual
assembly builder (VAB) deployer 522, together with an
assembly or VAB repository.

In accordance with an embodiment, the VAB deployer can
be provided by functionality, components or products such as
Oracle Virtual Assembly Builder (OVAB). The VAB deployer
(e.g., the OVAB Deployer) can then be used by the PaaS
platform to manage those VMs that will host the servicing
applications. In accordance with other embodiments, other
means of providing assembly builder functionality or com-
ponents can be used.

In accordance with an embodiment, the PaaS administra-
tion server can be implemented as a WebLogic (WLS) server
application, together with, e.g., Glassfish modules embedded
therein to provide cloud platform functionality. A service
domain 510, including a service app and service console 532,
can be provided for housing those enterprise applications,
such as the Fusion Middleware applications, that will ulti-
mately service user requests. In accordance with an embodi-
ment, the service domain components may be instantiated
multiple times as part of provisioning requests.

In accordance with an embodiment, provider server types
that will be used by the PaaS administration server and the
service domain (examples of which can include LDAP 526,
database 527, and Web-Tier 528 providers) can be provided in
pools that are not provisioned by the administration server,
since these are external services that are registered with the
cloud environment. In accordance with an embodiment, the
PaaS platform can make use of a single load-balancer pro-
vider to forward all incoming, e.g., Web requests, that are
directed to the services. For example, each service can be
associated with a virtual host name that will be registered with
the load-balancer provider during service provisioning, and
the PaaS platform can include a pool of database providers
which those services can utilize. When a service is later
provisioned, all external references to a database service are
then resolved to point to one or more instances in the database
provider pool.

FIG. 5 further illustrates a PaaS platform component,
including the use of service definition packages and service
management engines with an administration server, in accor-
dance with an embodiment. As shown in FIG. 5, in accor-
dance with an embodiment, new enterprise application ser-
vice types (e.g., new Fusion Middleware service types),
which the administrator wishes to make available for use
within the PaaS platform, can be installed from an SDP.

In accordance with an embodiment, SDPs can be down-
loaded over the Internet, or can be provided by other means.
Each SDP contains custom code that can be injected into the
PaasS platform, for use in supporting, e.g., elasticity and pro-
visioning; together with an assembly (e.g., an OVAB assem-
bly) that contains the topology and configuration of a set of
virtual appliances that will comprise a running instance ofthe
enterprise application service once the assembly is deployed
onto a set of VMs. Each of the service types/providers that the
PaaS administrator interacts with can be registered with the
system in this manner. Other provider service types, such as
external services, can be generally pre-installed.

FIG. 6 further illustrates a PaaS platform component,
including the interaction between an administration server
and a virtualization manager, in accordance with an embodi-
ment. As shown in FIG. 6, in accordance with an embodi-
ment, a VM manager component 541 (e.g., OVM Manager)
can be used by the PaaS platform to manage the pool 540 of
VMs 542, 543, 544, which are then used in instantiating a
service assembly.

US 9,424,024 B2

9

When a request is made from a PaaS platform module to
instantiate an assembly (or a single appliance in the case of a
scale-up request), the VAB deployer application (e.g., OVAB
Deployer) can then interact with the VM manager (e.g., OVM
Manager) to fulfill the request. By delegating the infrastruc-
ture/virtualization responsibilities to the VM manager and the
VAB deployer in this manner, the PaaS platform can be
abstracted from the target deployment platform.

FIG. 7 further illustrates a PaaS platform component,
including a multiple tenant service domain, in accordance
with an embodiment.

As shown in FIG. 7, a service domain can include multiple
tenants 550, 551, 552, that are configurable using the service
console. Multi-tenancy, like virtualization, is a density opti-
mization that allows the use of less resources to support more
clients and, similar to virtualization, should be transparent to
the applications themselves. Although multi-tenancy
involves the use of shared resources, the sharing need not be
part ofthe logical model of the applications. These models are
referred to as using “multitenant™ and “dedicated” resources.

Separately, applications may also share resources in a way
that is part of the logical model of the applications. For
example, two applications may purposely access a shared
database because they intend to operate on the same data.
These models are referred to as using “shared” and
“unshared” resources.

In accordance with an embodiment, some service types
may support both dedicated and multitenant uses, based on
their particular configuration. Other service types may sup-
port either only dedicated use, or only multitenant use. Ser-
vice types that are able to support multiple tenants on the
same runtime can provision their runtimes in a multitenant
manner during the instantiation process, based on the con-
figuration of the service type. A single instantiated service
runtime that has been marked as multitenant-capable will be
reused for a finite number of additional service provisioning
requests, as determined by the service type and based on its
configuration. Generally, it is left to the service application to
support this tenancy mode; service applications that are not
multitenant will only be able to support a single account for
each service instance.

Once a service has been instantiated from its VM assembly,
end users 546 can then interact with the system and the
instantiated services in the same manner as they would inter-
act with an on-premise version of that service.

FIG. 8 further illustrates a PaaS platform component,
including a cloud account manager, in accordance with an
embodiment. As shown in FIG. 8, in accordance with an
embodiment, the PaaS platform can include a cloud platform
administration service (CPAS) 560, together with a cloud
account manager 570 which is responsible for supporting
functions such as account management, and for providing a
framework that other modules of the PaaS platform (e.g., the
orchestration engine/SMEs 562, CEM 564, or identity man-
agement service 566) can use to access or persist account-
specific data.

In accordance with an embodiment, a configuration man-
agement component 573 can use a configuration layer 580 to
persist account specific configuration 583 and other files 584
to an account store 582, which then enables the various ser-
vices and other components of the CPAS to access and
manipulate account-specific data.

In accordance with an embodiment, an account manage-
ment module 574 also provides the ability to manage
accounts for a CPAS domain. This can be exposed through the
use of a command-line, REST, or other identity management
application program interface (API) 581. Each account can

10

15

20

25

30

35

40

45

50

55

60

65

10

have multiple users. In accordance with an embodiment, the
users can either be managed in an identity store 586 managed
by the PaaS platform, or alternatively can be provided from an
external (e.g., corporate) LDAP, or from another means of
user identification.

In accordance with an embodiment, users can access the
cloud account manager through an administration interface
572. The account and configuration data can also be stored on
a file system or other means of storage that is accessible from
all nodes of a CPAS cluster.

Service Definition Package (SDP)

FIG. 9 further illustrates use of a service definition package
with a PaaS platform component, in accordance with an
embodiment. In accordance with an embodiment, a Service
Definition Package (SDP) is the means by which a particular
enterprise application component (e.g., a Fusion Middleware
component) is delivered as a service type into the PaaS plat-
form.

In accordance with an embodiment, an SDP generally has
the following characteristics: it can be easily created for a
particular enterprise application component; it can be
deployed to various virtualization technologies (e.g., OVM,
Amazon, KVM, or VirtualBox); it can be deployed to non-
virtualized environments (e.g., laptop mode); and it includes
support for pre-provisioned service types or providers.

As shown in FIG. 9, in accordance with an embodiment,
each SDP 592, 596 can include a binary 593, 597; a metadata
594, 598 (e.g., the SDP name, service type, version, vendor,
or virtualization support metadata such as indicating whether
the SDP supports OVAB, EC2, or Native); and one or more
plugins 595, 599 that enable the SDP to be used within a PaaS
platform or cloud environment. In accordance with an exem-
plary embodiment, each SDP can also include:

An assembly, reference, package, archive or template,
which can be used to install a service on a particular
virtualization provider (e.g., OVAB); an assembly
bundled within the SDP; or a reference to an assembly
(e.g., an EC2-specific reference).

A service management plugin or SME plugin for the ser-
vice type, which enables PaaS platform functionality
such as elasticity metric gatherers, or alerts to be used
with the service.

A plugin for use with an VAB deployer (e.g., OVAB
Deployer) during its assembly rehydration process.

Dependency information regarding service providers, such
as association rules or other artifacts for association; for
example, an association with a database provider may
require information such as a database schema, or appro-
priate tables.

Configuration metadata, which in some instances may be
further subdivided into service configuration and service
runtime configuration metadata.

Access interfaces, such as service administration inter-
faces or URL patterns for use by a service administrator
(e.g., a WLS admin server URL).

Quality of service metadata, for use with the service and its
runtimes.

Scalability metadata, such as scalability limits for different
components; for example, the scalability limits for dif-
ferent appliances within an assembly can be defined, and
these scalability limits exposed to the system adminis-
trator or cloud account administrator and the elasticity
manager, for appropriate scaling and handling.

An indication of supported tenancy model, such as whether
the service is a multitenant or dedicated service.

Security template/credentials for use with the service.

US 9,424,024 B2

11

The above description of an exemplary embodiment of
SDP contents is provided as an illustration of some of the
types of information which can be included in an SDP. In
accordance with other embodiments, different and/or other
types of information can be included in an SDP.

In accordance with an embodiment, for a PaaS system
administrator to provide support for a particular enterprise
application or other software component as a service type, the
system administrator can download an SDP for the particular
service type, and install the SDP to the PaaS platform.

In accordance with an embodiment, installing an SDP will
install, e.g., the OVAB assembly into the OVAB repository;
appropriate SME plugins will be registered with the cloud
platform; and metric gatherers, alerts and actions will be
installed in the PaaS platform. After the system administrator
installs the SDP, a cloud account administrator can then use
the cloud account administration interface to request for a
service of that type. A service is the realization of a particular
service type.

For example, in the context of Fusion Middleware compo-
nents, each version of a Fusion Middleware component can
have a separate SDP. When a cloud account administrator/
service administrator wants to upgrade to a new version of a
Fusion Middleware component, they can select a new version
of'the SDP. For example, to be able to support SOA suite 11g,
and SOA suite 12.1.3, there can be separate SDPs for these
two versions of the SOA suite product.

In accordance with an embodiment, an SDP can be pack-
aged as a zip or a jar file, for example:

<SDP Name~>.zip

->.ova (OVAB assembly if bundled)

-> sme-plugin.jar (includes elasticity components)
-> service-definition.xml (metadata for the service)

An SDP can also be packaged as other file formats, depend-
ing on the particular implementation. As shown in FIG. 9, In
accordance with an embodiment, when an SDP installed into
a PaaS platform domain, it is subsequently consumed by the
SDP Manager 590, which is responsible for obtaining a list of
SDPs that are available to be installed the local system; down-
loading an SDP if necessary, and installing the parts of the
SDP into the right places; maintaining a list of those SDPs
that have been installed; and, if necessary, uninstalling an
SDP by uninstalling all of its parts from the places where they
are/were previously installed.

In accordance with an embodiment, the SDP manager sup-
ports multiple versions of a given SDP (e.g., SOA 11 and SOA
12), in addition to patching of an existing version of an SDP.
Generally, when an SDP is patched (as described in further
detail below), this will only affect the installed components
related to the SDP in the PaaS infrastructure; it will not affect
the services of that service type.

In accordance with an embodiment, the SDP manager iso-
lates the PaaS system from the format of the SDP file. No
other parts of the PaaS platform architecture need be aware of
the precise SDP file format. The SDP manager can interface
with other system components by installing an SME plugin to
the CPAS, which can then take responsibility for replicating
the SME plugin to other CPAS instances in the cluster; install-
ing the VAB assembly 602, 604 (e.g., an OVAB assembly)
into the VAB deployer (e.g., OVAB Deployer); interfacing
with other tools such as Enterprise Manager to provide a
customized console interface for the service if the service
provides one; and, installing configuration data for the service
into the CPAS.

10

15

20

30

35

40

45

50

55

60

65

12

Subsequently, during realization 606 of a service, the ser-
vice 610 can be realized as an instance of those service types
defined by the SDP and installed as assemblies in the VAB
repository.

FIG. 10 is a flowchart of a process for using a service
definition package with a PaaS platform component, in accor-
dance with an embodiment. As shown in FIG. 10, at step 612,
one or more computers are provided, including a cloud envi-
ronment and a PaaS platform component (PaaS platform)
executing thereon.

At step 614, one or more service definition packages are
provided for use with the platform component, wherein each
service definition package includes an application binary
component, and a metadata.

At step 616, the one or more service definition packages are
parsed to determine service characteristics and requirements,
for a particular enterprise application component, that deter-
mine how that particular enterprise application component is
deliverable as a service type within the platform component.

At step 618, corresponding enterprise application compo-
nents are provisioned as service types into the platform com-
ponent, for use within the cloud environment.

Service Management Engine (SME)

FIG. 11 further illustrates use of a service management
engine with a PaaS platform component, in accordance with
an embodiment.

Generally described, in accordance with an embodiment, a
Service Management Engine (SME) provides a generic
means to plug any service type into the system. For example,
an SME takes care of all of the service-specific provisioning,
lifecycle, management, and monitoring support for a service
type or provider type. The orchestration engine (OFE, as
described in further detail below), being service-agnostic,
depends completely on the SME to handle all service-related
actions.

Inaccordance with an embodiment, within a PaaS platform
domain, there can be several different classes of SMEs. For
example, provider SMEs can be provided to handle different
providers that are supported in the PaaS platform domain.
Examples of the types of providers that can be supported
include Database, Web-Tier, and Identity-Management pro-
viders. In accordance with an embodiment, a provider SME is
configured to point to an existing external service within the
enterprise, by creating a provider type from the provider SDP.
The provider SME is also responsible for all actions such as
schema management that may be required as part of associa-
tion and dissociation with the service being created. Provider
SMEs are generally not configured to handle provisioning,
unprovisioning, or management of the external service
pointed to by the provider type; although provider SMEs
could be configured to do so.

In accordance with an embodiment, service SMEs can be
added to the PaaS platform domain using an SDP. For
example, a service SME can be dynamically incorporated
into the PaaS platform domain by installing an appropriate
SDP. In accordance with an embodiment, the SDP manager
handles the installation/registration of service SMEs bundled
in SDPs with the PaaS platform domain. The set of registered
service SMEs then become the service types that are available
to cloud account administrators to create services.

In accordance with an embodiment, each service type sup-
ported in the PaaS platform domain maps to a specific service
SME. A service SME handles all service related activities,
such as spanning creation, monitoring, management, patch-
ing, upgrade, and deletion for that service. In accordance with
an embodiment, the contract that is implemented by an SME

US 9,424,024 B2

13

is referred to as a Service Management Interface (SMI),
which defines the support for monitoring, patching and
upgrade of the service.

In accordance with an embodiment, the orchestration
engine interacts with the provider and service SMEs to create
a servicein a PaaS platform domain. The orchestration engine
choreographs the creation of service; however all service
level activities are handled by SMEs. In the example shown in
FIG. 11, when OVAB is used as a virtualization provider, all
interaction with the OVAB Deployer is handled by a Virtual-
ization API (e.g., an OVAB client API). In accordance with an
embodiment, the orchestration process can then proceed as
follows:

A cloud account administrator discovers, e.g., SOA service
types 620, 622 that are available in the PaaS platform
domain, and initiates the creation of, in this example, an
SOA service.

The orchestration engine iterates through all of the avail-
able service SMEs in the system, and determines which
service SMEs can handle this service type 624. In this
example, the orchestration engine will discover, in this
example, the SOA SME to handle creation of the SOA
service.

The orchestration engine then calls into the SOA SME to
get all provider dependencies for that SME 625. In this
example, the SOA SME returns database and load-bal-
ancer provider dependencies.

The orchestration engine then calls a get-user or similar
configurable properties function for the SOA SME, and
exposes those properties in a user interface or GUI, so
that the cloud account administrator can edit the prop-
erties as desired.

User-provided inputs are then supplied to the SOA SME.
Since in this example OVAB is being used, the user
provided inputs can be used to update the OVAB deploy-
ment plan.

The orchestration engine performs any pre-provisioning
association between the SOA SME and the provider
SMESs upon which it depends. For example, the orches-
tration engine will perform pre-provisioning association
between the SOA SME and database provider SME,
which results in creation of schema and tables as
required by the SOA service, in addition to populating
the deployment plan with the database provider configu-
ration.

Once any pre-provisioning association is complete, the
orchestration engine then calls into the SOA SME 626 to
provision the SOA service. At this point, the deployment
plan is generally complete except for network configu-
rations. The updated deployment plan together with an
assembly ID can be pushed to the OVAB API, which
takes care of filling the deployment plan with the
remaining network configurations. Then, the orchestra-
tion engine can call the web service API of the OVAB
deployer to provision the OVAB assembly. Once the
assembly is provisioned, all of the virtual machine infor-
mation is retrieved and passed back to the SOA SME,
which in turn passes this information back to the orches-
tration engine. The orchestration engine may persist this
information for later use.

The orchestration engine then performs any post-provi-
sioning association between the SOA SME and the pro-
vider SMEs on which it depends. For example, post-
provisioning association between the SOA SME and
load-balancer provider SME may result in virtual server
creation to handle requests for this SOA service and
appropriately route them.

10

15

20

25

30

35

40

45

50

55

60

65

14

Finally, the status of the service creation is returned back to

the cloud account administrator.

The above description of an orchestration process, using
OVAB Deployer as a means of deploying assemblies, a SOA
service and SOA SME as an example SME, and association
with database and load-balancer providers, is provided to
illustrate an exemplary orchestration process. In accordance
with other embodiments, different and/or other types of, e.g.,
VAB deployer, SME, and providers can be used.

FIG. 12 is a flowchart of a process for using a service
management engine with a PaaS platform component, in
accordance with an embodiment. As shown in FIG. 12, at step
at step 630, one or more computers are provided, including a
cloud environment and a PaaS platform component (PaaS
platform) executing thereon.

At step 632, one or more service management engines are
provided in communication with an orchestration engine,
which are used to provision services as service types, includ-
ing one or more provisioning, lifecycle management, and
monitoring of the service types.

At step 634, particular service types are determined to be
provisioned for use within the cloud environment.

At step 636, service management engines are used to parse
a configuration of the platform component itself and/or a
service definition package, and to provision services as one or
more different service types, according to the configuration of
the platform component and/or the contents of the service
definition package.

At step 638, corresponding service management engines
are configured within the platform component to support
those particular service types.

Orchestration Engine

FIG. 13 further illustrates use of an orchestration engine
with a PaaS platform component, in accordance with an
embodiment.

In accordance with an embodiment, the orchestration
engine (OE) enables service creation, provider dependency
resolution, association of services and providers, and gener-
ally the end to end life-cycle management of the services in
the PaaS platform. In particular, the orchestration engine
coordinates all of the interactions among various components
in the PaaS platform domain while creating or managing a
service; enables the pluggability of SMEs for various service
types in the platform; and aids in provisioning the service by
selecting appropriate SMEs from among those available in
the platform. The orchestration engine also helps in managing
the configuration of providers such as DB Providers, IDM
Providers, and LB Providers.

In accordance with an embodiment, the orchestration
engine, as part of creating a service, ensures that all of the
dependencies of the service, such as its provider dependen-
cies are satisfied, by selecting appropriate providers (provider
SMEjs), and coordinating the association between the provid-
ers and service. The act of association can be performed
during pre-provisioning and/or post provisioning-phases.
The act of installing and configuring an SME can be per-
formed by the SDP manager as part of registering a pre-
packaged service type or a customized service type. The
orchestration engine helps expose the deployment plan con-
figuration, which can be configured by the cloud account
administrator through the console during the act of provision-
ing the service.

In accordance with an embodiment, the orchestration
engine recognizes a set of phases and tasks that match the
requirements of the PaaS platform for its “service creation”
action and other life-cycle related activities. The orchestra-
tion engine is also designed to be extensible and to allow the

US 9,424,024 B2

15

configuration of phases and tasks in all actions that are man-
aged by the orchestration engine.

Provisioning and managing a service in a virtualized envi-
ronment is often a time-consuming action and generally
needs to be performed in an asynchronous fashion. The sys-
tem must also be able to handle any transient (or retryable)
failures, and continue with the provisioning activity. In accor-
dance with an embodiment, the administrator can query or
monitor any of these asynchronous activities on demand. A
unique identifier can also be provided for actions such as
provision, unprovision etc., in order to determine, display and
record the progress status of all initiated actions.

In accordance with an embodiment, the orchestration
engine also helps to retry atask, or rollback an action based on
the resiliency of the task, where the task or phase can have
markers (annotations) to indicate the resiliency level and any
compensating act.

In accordance with an embodiment, the orchestration
engine acts as a gateway for all service management, moni-
toring, scaling actions that could be initiated by other con-
tainers in the PaaS platform domain, or by the administrator.
For example, the elasticity engine (as described in further
detail below) communicates with the orchestration engine to
manage, monitor, and scale services based on a service’s QoS
configuration. The orchestration engine can also play a role in
service maintenance actions, such as patching and upgrade,
which can be performed in an active system in a rolling
fashion that helps avoid down time of the service. Such
actions may require disassociating or re-associating services
in a phased manner.

In accordance with an embodiment, services created by a
cloud account administrator are visible and accessible only to
that particular cloud account (tenant), and are isolated from
other cloud accounts in the PaaS platform domain. In accor-
dance with an embodiment, such isolation can be provided by
the orchestration engine with the help of a cloud account
management module. Storing and managing service configu-
ration, status, and accessibility are achieved by having sepa-
rate cloud account data stores. Both multitenant and dedi-
cated tenancy models can be supported within a platform
domain. The orchestration engine, based on the preference
provided in the service metadata, selects an appropriate pro-
vider type that supports the required tenancy level. Similarly,
multitenant and dedicated tenancy models can be supported
for services based on multitenant service runtimes, or on a
dedicated service runtime per service.

In accordance with an embodiment, SMEs can be regis-
tered with the orchestration engine such that multiple SMEs
for a given “family” of service (e.g., “database™) can be
present in the system. It is also possible to configure a default
SME for a particular service family on a per-cloud account
basis.

As shown in FIG. 13, in accordance with an embodiment,
the virtualization features for CPAS are primarily built
around the VAB deployer (e.g., OVAB Deployer), with VAB
assemblies (e.g., OVAB Assemblies) being the unit of provi-
sioning. In accordance with other embodiments, the CPAS
can support alternative virtualization solutions.

In accordance with an embodiment, the orchestration and
service management components can interface with the vir-
tualization layer through a virtualization service 640, plugin
642, and a virtualization API 646 that abstracts the basic
virtualization operations supported. In accordance with an
embodiment that uses OVAB, this API can be an OVAB
Deployer interface, which allows OVAB Deployer to perform
the tasks of assembly creation. Products such as OVAB sup-
port virtualization providers such as OVM, in addition to

10

15

20

25

30

35

40

45

50

55

60

65

16

computer hardware machines such as Exal.ogic. Products
such as OVAB Deployer also provide an SPI that allows the
development of plugins to support additional virtualization
technologies, such as EC2. In accordance with an embodi-
ment, the orchestration engine/SME can upload and deploys
assemblies through the OVAB Virtualization AP], in addition
to managing their lifecycle.

To support developer/demo scenarios, in accordance with
an embodiment, the system can also implement a limited
solution that can run on native OS processes (i.e., with no
virtualization). This capability can be implemented by pro-
viding a physical plugin that implements a portion of the
Virtual Assembly Service API.

FIG. 14 is a flowchart of a process for using an orchestra-
tion engine with a PaaS platform component, in accordance
with an embodiment. As shown in FIG. 14, at step at step 650,
one or more computers are provided, including a cloud envi-
ronment and a PaaS platform component (PaaS platform)
executing thereon.

At step 652, one or more service definition packages are
received, for use with the platform component, wherein each
service definition package defines, for a particular enterprise
application component, how that particular enterprise appli-
cation component is deliverable as a service type within the
platform component.

At step 654, the process determines, within the service
definition package, a virtual assembly that defines a topology
and a configuration for a set of virtual appliances.

At step 656, particular service types are determined to be
provisioned for use within the cloud environment, and corre-
sponding service management engines configured within the
platform component to support those particular service types.

At step 658, the process communicates with a plurality of
service management engines to control the flow of service
creation, provider dependency resolution, association of ser-
vices and providers, and life-cycle management of services
within the cloud environment.

Elasticity Manager

FIG. 15 further illustrates use of an elasticity manager with
a PaaS platform component, in accordance with an embodi-
ment.

As shown in FIG. 15, in accordance with an embodiment,
the cloud elasticity manager 660, including an environment
manager 662, can use metric gatherers 664, 665 and alerts
670, to determine the health of services running in an envi-
ronment. Once the state of the environment is determined, the
cloud elasticity manager can take appropriate actions 672. In
accordance with an embodiment, the metric gatherers, alerts
and actions can be provides as HK2 contracts, such that the set
of metric gatherers, alerts and actions are extensible.

In accordance with an embodiment, a metric gatherer is an
object that collects and maintains metric data about a service
periodically. For example, a metric gatherer may periodically
collect heap statistics such as used memory and committed
memory. Another metric gatherer can periodically gather
metrics about CPU usage. Generally, the metric gatherers
provide information about the state of some resource usage.
Metrics can also be provided by external monitoring tools and
need not be metric gatherer objects. In accordance with an
embodiment, the cloud elasticity manager allows any Java
bean component to provide metrics data for use in generating
alerts.

In accordance with an embodiment, an alert object periodi-
cally checks the health of a service in an environment by
analyzing metric data gathered by one or more metric gath-
erers over a period of time. For example, an alert may exam-
ine the CPU usage for the past 10 minutes to determine if the

US 9,424,024 B2

17

environment is under stress. After the alert determines the
state of the service or environment, it can execute some
action, such as: sending an email; logging a message; sending
an event; or scaling-up or scaling-down a service. In accor-
dance with an embodiment, an alert can take multiple actions.

In accordance with an embodiment, the cloud elasticity
manager can include a unified Expression Language (EL)
engine 668 that allows alerts to be specified as ELL expres-
sions. EL, expressions can also use metric gatherers and alerts
in their expressions. In accordance with an embodiment, the
cloud elasticity manager also allows external EL. Resolver
objects 667 to be registered; which allows other types of
objects such as MBeans or POJOs to be used in an expression.

Metric gatherers, alerts and actions typically require some
configuration data. For example, a metric gatherer may
require some configuration data that specifies the duration of
time metric data should be kept. Similarly, alerts may require
some configuration data that specifies the threshold value. In
accordance with an embodiment, the cloud elasticity man-
ager relies on the cloud account manager to persist such
configuration data. Again, configuration data can be based on
HK2, thereby allowing easy extensibility.

FIG. 16 is a flowchart of a process for using an elasticity
manager with a PaaS platform component, in accordance
with an embodiment. As shown in FIG. 16, at step at step 673,
one or more computers are provided, including a cloud envi-
ronment and a PaaS platform component (PaaS platform)
executing thereon.

At step 674, the orchestration engine determines particular
service types to be provisioned for use within the cloud envi-
ronment, and configures corresponding service management
engines within the platform component to support those par-
ticular service types.

At step 676, the elasticity manager determines health of
services within the platform component, and takes appropri-
ate actions, including detecting events, issuing alerts and/or
notifying the orchestration engine to manage the service life-
cycle.

At step 677, one or more metric gatherer object periodi-
cally collects and maintains metric data about a service
resource usage; while one or more alert object periodically
checks the health of a service in an environment by analyzing
metric data gathered by one or more metric gatherers over a
period of time.

Atstep 679, the elasticity manager is configured to manage
the service lifecycle, to respond to requirements, including
increased demand for particular services.

Updating and Patching of SDPs

FIG. 17 further illustrates patching of service definition
packages with a PaaS platform component, in accordance
with an embodiment. In accordance with an embodiment,
services can be periodically maintained to ensure that they are
up-to-date with, e.g., bug fixes, security updates and configu-
ration changes. To help ensure homogeneous environments,
services should be updated in a timely manner, with the same
set of patches and configuration updates.

In accordance with an embodiment, an update is defined to
be a change which has to be made to the system. Examples of
updates include an application of a security patch, upgrade of
a component, or changing of a configuration value. Depend-
ing on the type of update, some updates may require a down-
time, while other updates may not require a downtime. The
system can take both of these situations into account.

In accordance with an embodiment, updates can include
hard updates—an update which requires a service downtime
(e.g., patches to middleware, operating system (OS) updates

10

15

20

25

30

35

40

45

50

55

60

65

18

etc.), or a service reboot; and soft updates—an update which
does not require system downtime (e.g., some configuration
changes).

Soft updates avoid a downtime, but at the expense of ser-
vice stability. To this extent, it is important that the system
administrator categorizes updates properly. It is also impor-
tant that all services are updated to keep the environment
homogeneous, and that maintenance windows are restricted
to ensure that all of the services are updated properly.

In accordance with an embodiment, a maintenance win-
dow is defined as a time frame when updates will be applied
to a particular service. A different maintenance window can
be different for different services. Generally, one or more of
the following actions will happen during the maintenance
window, depending on the update type: lockout the service
(typically only for hard update); backup the service; apply
and or all of OS updates; perform system configuration
changes; apply patches for an enterprise application, e.g.,
Fusion Middleware components; perform service configura-
tion changes (e.g., tune threads, IO timeouts etc.); perform
updates to other non-standard components; reboot service
VMs; perform health check; and/or open up a service for
public access.

For a soft update, not all of the above steps may be neces-
sary. However, soft updates are still preferably applied when
the service access is at a minimum (e.g., during the night).
Although some updates may not require a restart or reboot of
service runtimes, it is generally recommended that the VMs
hosting the service are rebooted, to provide a clean state.

Inaccordance with an embodiment, an upgrade of a service
is similar to a hard update, except that one or more of the
components will be undergoing a major change, which may
involve one or more of the following: installation of a soft-
ware component with a different version; minor version
upgrade of a software component; or configuration migra-
tion.

In accordance with an embodiment, a service may be
upgraded if the components being upgraded provide the nec-
essary tooling, and the ability to automate the migration sce-
nario.

In accordance with an embodiment, a repository is
assumed to be available as alocal (or mounted) file system on
the service runtimes. A repository can be used to hold all of
the components (patches, configuration files, scripts etc.)
which will be required during the maintenance window. For
example, the repository can hold artifacts for different ver-
sions of service, e.g.,
repository:// . . . /<service-name>/<version-#>/<mainte-
nance-window-#>/ . . .

As shown in FIG. 17, in accordance with an embodiment,
prior to a maintenance window, the repository is updated with
the necessary components 682, e.g., patches, Puppet mani-
fests, or shell scripts. Updates can be driven using a configu-
ration tool, such as Puppet or a tool or component that pro-
vides similar functionality. In accordance with an
embodiment, if a service does not have Puppet or the appro-
priate configuration tool installed, the patching infrastructure
will install configuration tool and will apply manifests made
available in the repository.

A service administrator may also choose a different auto-
mation framework for handling updates. All updates should
be transactional, and should be capable of being rolled back in
case of failures.

In accordance with an embodiment, the system adminis-
trator then defines a maintenance window 685, for use by the
service update logic 684. In accordance with an embodiment,
the cloud administration console can be used to define the

US 9,424,024 B2

19

maintenance window. The system administrator then config-
ures information such as: the service name and version of
SDP for the services to be patched; whether the maintenance
window is a hard or soft window; the length of the mainte-
nance window (typically, 60 mins for hard updates); the time
frame for scheduling the updates (typically, a week for hard
updates); and any other parameters which qualify the appro-
priate time for updates.

In accordance with an embodiment, the service update
logic will then assign a default time slot for each service.
Email notifications can be sent to service administrators in
case of ‘hard’ updates notifying them of a system downtime.
In accordance with an embodiment, a service administrator
has an option to choose amongst three time slots when his/her
service will incur a downtime and update.

At update time, the update is requested by the service
update logic 687, and the information in the repository is used
to patch or update a service from its original configuration
686, to a modified configuration 689.

FIG. 18 is a flowchart of a process for patching of service
definition packages with a PaaS platform component, in
accordance with an embodiment. As shown in FIG. 18, at step
at step 690, one or more computers are provided, including a
cloud environment and a PaaS platform component (PaaS
platform) executing thereon.

At step 691, one or more service definition packages are
provided, for use with the platform component, wherein each
service definition package defines, for a particular enterprise
application component, how that particular enterprise appli-
cation component is deliverable as a service type within the
platform component.

At step 692, a service update logic is provided for modify-
ing the one or more service definition packages within a
maintenance window, according to one or more patches or
updates associated with the service definition packages.

At step 694, a repository is provided as one of alocal or a
mounted file system at service runtime, and that includes
patch, configuration file, script and/or other components,
which are used by the service update logic during the main-
tenance window to modity the service definition packages.

Atstep 696, a service’s characteristics and/or requirements
are modified or updated dynamically, by reconfiguring the
platform component itself and/or by mounting a disk volume
that corresponds to the service’s service definition packages,
and modifying its file system contents directly.

The present invention may be conveniently implemented
using one or more conventional general purpose or special-
ized digital computer, computing device, machine, or micro-
processor, including one or more processors, memory and/or
computer readable storage media programmed according to
the teachings of the present disclosure. Appropriate software
coding can readily be prepared by skilled programmers based
on the teachings of the present disclosure, as will be apparent
to those skilled in the software art.

In some embodiments, the present invention includes a
computer program product which is a non-transitory storage
medium or computer readable medium (media) having
instructions stored thereon/in which can be used to program a
computer to perform any of the processes of the present
invention. The storage medium can include, but is not limited
to, any type of disk including floppy disks, optical discs,
DVD, CD-ROMs, microdrive, and magneto-optical disks,
ROMs, RAMs, EPROMs, EEPROMs, DRAMs, VRAM,
flash memory devices, magnetic or optical cards, nanosys-
tems (including molecular memory ICs), or any type of media
or device suitable for storing instructions and/or data.

20

25

40

45

50

55

60

20

The foregoing description of the present invention has been
provided for the purposes of illustration and description. It is
not intended to be exhaustive or to limit the invention to the
precise forms disclosed. Many modifications and variations
will be apparent to the practitioner skilled in the art. The
embodiments were chosen and described in order to best
explain the principles of the invention and its practical appli-
cation, thereby enabling others skilled in the art to understand
the invention for various embodiments and with various
modifications that are suited to the particular use contem-
plated. It is intended that the scope of the invention be defined
by the following claims and their equivalence.

What is claimed is:

1. A system for elasticity management of services for use
with a cloud computing environment, comprising:

one or more computers including a cloud environment
executing thereon;

a platform component that is provided as an installable
software suite within the cloud environment, and that
supports self-service provisioning for enterprise appli-
cations;

an orchestration engine, which receives service definitions
included in one or more service definition packages
from a service definition package manager, for use with
the platform component, and determines particular ser-
vice types to be provisioned for use within the cloud
environment, and configures a service management
engine corresponding to each of the particular service
types within the platform component to support those
particular service types,

wherein each service management engine is configured to
provision and manage a service lifecycle of the particu-
lar service type to which it corresponds and each service
management engine is registered with the orchestration
engine, and

wherein each of the one or more service definition pack-
ages further includes within the service definition pack-
age a binary that is installed by the service definition
package manager onto the platform for a particular ser-
vice type; and

an elasticity manager that determines health of services
within the platform component, and takes appropriate
actions, including detecting events, issuing alerts and/or
notifying the orchestration engine to manage the service
lifecycle via the service management engine corre-
sponding to the particular service type; and

wherein the service definition package manager is config-
ured to expose the portions of the one or more service
definition packages installed onto the platform to the
orchestration engine.

2. The system of claim 1, wherein the system further com-

prises

a metric gatherer object that periodically collects and
maintains metric data about a service resource usage,
including one or more of heap statistics, used and com-
mitted memory, processor usage, and other resource
usage; and

an alert object that periodically checks the health of a
service in an environment by analyzing metric data gath-
ered by one or more metric gatherers over a period of
time.

3. The system of claim 1, wherein the elasticity manager is
configured to manage the service lifecycle, to respond
requirements including increased demand for particular ser-
vices.

4. The system of claim 1, wherein the one or more service
definition packages each includes a virtual assembly contain-

US 9,424,024 B2

21

ing topology and configuration of a set of virtual appliances
comprising a running instance of the particular service type
once deployed onto a set of virtual machines (VM).

5. The system of claim 1, further comprising:

a service definition package manager, and

wherein the service definition package manager is config-

ured to register a plurality of SMEs corresponding to a
plurality of service definition packages from which the
one or more service definition packages are received by
the orchestration engine; and

wherein the registered SMEs determine those servicetypes

that are available for creating services.

6. The system of claim 1, wherein the orchestration engine
is configured to associate two or more SMFEs that depend on
one another prior to provisioning of a service.

7. A method of providing elasticity management of ser-
vices for use with a cloud computing environment, compris-
ing:

providing one or more computers including a cloud envi-

ronment executing thereon;

providing a platform component that is provided as an

installable software suite within the cloud environment,
and that supports self-service provisioning for enterprise
applications;
providing an orchestration engine, which receives service
definitions included in one or more service definition
packages from a service definition package manager, for
use with the platform component, and determines par-
ticular service types to be provisioned for use within the
cloud environment, and configures a service manage-
ment engine corresponding to each of the particular
service types within the platform component to support
those particular service types,
wherein each service management engine is configured to
provision and manage a service lifecycle of the particu-
lar service type to which it corresponds and each service
management engine is registered with the orchestration
engine, and
wherein each of the one or more service definition pack-
ages further includes within the service definition pack-
age a binary that is installed by the service definition
package manager onto the platform for a particular ser-
vice type; and
providing an elasticity manager that determines health of
services within the platform component, and takes
appropriate actions, including detecting events, issuing
alerts and/or notifying the orchestration engine to man-
age the service lifecycle via the service management
engine corresponding to the particular service type; and

wherein the service definition package manager is config-
ured to expose the portions of the one or more service
definition packages installed onto the platform to the
orchestration engine.

8. The method of claim 7, further comprising

providing a metric gatherer object that periodically collects

and maintains metric data about a service resource
usage, including one or more of heap statistics, used and
committed memory, processor usage, and other resource
usage; and

providing an alert object that periodically checks the health

of a service in an environment by analyzing metric data
gathered by one or more metric gatherers over a period
of time.

9. The method of claim 7, wherein the elasticity manager is
configured to manage the service lifecycle, to respond
requirements including increased demand for particular ser-
vices.

10

15

25

30

40

45

50

60

22

10. The method of claim 7, wherein the one or more service
definition packages each includes a virtual assembly contain-
ing topology and configuration of a set of virtual appliances
comprising a running instance of the particular service type
once deployed onto a set of virtual machines (VM).

11. The method of claim 7, further comprising:

providing a service definition package manager, and

wherein the service definition package manager is config-

ured to register a plurality of SMEs corresponding to a
plurality of service definition packages from which the
one or more service definition packages are received by
the orchestration engine; and

wherein the registered SMEs determine those service types

that are available for creating services.

12. The method of claim 7, further comprising:

associating, via the orchestration engine, two or more

SMEs that depend on one another prior to provisioning
of a service.
13. A non-transitory computer readable storage medium,
including instructions stored thereon which when read and
executed by one or more computers cause the one or more
computers to perform the steps comprising:
providing, at one or more computers including a cloud
environment executing thereon, a platform component
that is provided as an installable software suite within
the cloud environment, and that supports self-service
provisioning for enterprise applications;
providing an orchestration engine, which receives service
definitions included in one or more service definition
packages from a service definition package manager, for
use with the platform component, and determines par-
ticular service types to be provisioned for use within the
cloud environment, and configures a service manage-
ment engine corresponding to each of the particular
service types within the platform component to support
those particular service types,
wherein each service management engine is configured to
provision and manage a service lifecycle of the particu-
lar service type to which it corresponds and each service
management engine is registered with the orchestration
engine, and
wherein each of the one or more service definition pack-
ages further includes within the service definition pack-
age a binary that is installed by the service definition
package manager onto the platform for a particular ser-
vice type; and
providing an elasticity manager that determines health of
services within the platform component, and takes
appropriate actions, including detecting events, issuing
alerts and/or notifying the orchestration engine to man-
age the service lifecycle via the service management
engine corresponding to the particular service type; and

wherein the service definition package manager is config-
ured to expose the portions of the one or more service
definition packages installed onto the platform to the
orchestration engine.

14. The non-transitory computer readable storage medium
of'claim 13, including instructions stored thereon which when
read and executed by one or more computers cause the one or
more computers to perform the steps further comprising:

providing a metric gatherer object that periodically collects

and maintains metric data about a service resource
usage, including one or more of heap statistics, used and
committed memory, processor usage, and other resource
usage; and

US 9,424,024 B2

23

providing an alert object that periodically checks the health
of a service in an environment by analyzing metric data
gathered by one or more metric gatherers over a period
of time.

15. The non-transitory computer readable storage medium
of claim 13, wherein the elasticity manager is configured to
manage the service lifecycle, to respond requirements includ-
ing increased demand for particular services.

16. The non-transitory computer readable storage medium
of claim 13, wherein the one or more service definition pack-
ages each includes a virtual assembly containing topology
and configuration of a set of virtual appliances comprising a
running instance of the particular service type once deployed
onto a set of virtual machines (VM).

17. The non-transitory computer readable storage medium
of'claim 13, including instructions stored thereon which when
read and executed by one or more computers cause the one or
more computers to perform the steps further comprising:

24
providing a service definition package manager, and

wherein the service definition package manager is config-
ured to register a plurality of SMEs corresponding to a
plurality of service definition packages from which the
one or more service definition packages are received by
the orchestration engine; and

wherein the registered SMEs determine those service types
that are available for creating services.

18. The non-transitory computer readable storage medium
of'claim 13, including instructions stored thereon which when
read and executed by one or more computers cause the one or
more computers to perform the steps further comprising:

associating, via the orchestration engine, two or more

SMEs that depend on one another prior to provisioning
of a service.

